### WOODHEAD PUBLISHING SERIES IN ELECTRONIC AND OPTICAL MATERIALS



# QUANTUM DOTS: EMERGING MATERIALS FOR VERSATILE APPLICATIONS



Edited by N. THEJO KALYANI SANJAY J. DHOBLE MARTA MICHALSKA-DOMAŃSKA B. VENGADAESVARAN H. NAGABHUSHANA ABDUL KARIEM AROF **Quantum Dots** 

This page intentionally left blank

Woodhead Publishing Series in Electronic and Optical Materials

# Quantum Dots

# **Emerging Materials for Versatile Applications**

Edited by N. Thejo Kalyani Sanjay J. Dhoble Marta Michalska-Domańska B. Vengadaesvaran H. Nagabhushana Abdul Kariem Arof





Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2023 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

#### Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-85278-4 (print)

ISBN: 978-0-323-85279-1 (online)

For information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Kayla Dos Santos Editorial Project Manager: Sara Greco Production Project Manager: Surya Narayanan Jayachandran Cover Designer: Christian J. Bilbow



Typeset by MPS Limited, Chennai, India

## Contents

List of contributors

|    | Section I Basic fundamentals, synthesis and characterization |         |                                                     |    |  |  |
|----|--------------------------------------------------------------|---------|-----------------------------------------------------|----|--|--|
| 1. | Intro                                                        | duction | n to nano materials                                 | 3  |  |  |
|    | N. Th                                                        | ejo Kal | lyani and Sanjay J. Dhoble                          |    |  |  |
|    | 1.1                                                          | Introd  | luction                                             | 3  |  |  |
|    |                                                              | 1.1.1   | Nano technology                                     | 4  |  |  |
|    |                                                              | 1.1.2   | Nano science                                        | 4  |  |  |
|    |                                                              | 1.1.3   | Nanomaterials                                       | 5  |  |  |
|    | 1.2                                                          | Classi  | fication of nano materials                          | 5  |  |  |
|    |                                                              | 1.2.1   | Zero-dimensional (0D) nanomaterials                 | 6  |  |  |
|    |                                                              | 1.2.2   | One-dimensional (1D) nanomaterials                  | 6  |  |  |
|    |                                                              | 1.2.3   | Two-dimensional (2D) nanomaterials                  | 6  |  |  |
|    |                                                              | 1.2.4   | Three-dimensional (3D) nanomaterials                | 6  |  |  |
|    | 1.3                                                          | What    | is so big on these small things?                    | 7  |  |  |
|    |                                                              |         | Surface area                                        | 7  |  |  |
|    |                                                              |         | Quantum confinement effect                          | 8  |  |  |
|    | 1.4                                                          |         | ials for the synthesis of nano materials            | 9  |  |  |
|    |                                                              |         | Carbon-based materials                              | 10 |  |  |
|    |                                                              |         | Metal-based materials                               | 10 |  |  |
|    |                                                              | 1.4.3   | Dendrimers                                          | 10 |  |  |
|    |                                                              |         | Composites                                          | 10 |  |  |
|    | 1.5                                                          | -       | rties of nanomaterials vs bulk materials            | 11 |  |  |
|    |                                                              |         | Physical properties                                 | 11 |  |  |
|    |                                                              |         | Chemical properties                                 | 11 |  |  |
|    |                                                              |         | Optical properties                                  | 11 |  |  |
|    |                                                              |         | Electrical properties                               | 12 |  |  |
|    |                                                              |         | Mechanical properties                               | 12 |  |  |
|    |                                                              |         | Magnetic properties                                 | 12 |  |  |
|    | 1.6                                                          | •       | esis of nanomaterials                               | 13 |  |  |
|    |                                                              |         | Top-down approach                                   | 13 |  |  |
|    |                                                              |         | Bottom-up approach                                  | 14 |  |  |
|    | 1.7                                                          | Depos   | sition techniques of nano materials on to substrate | 19 |  |  |

xvii

19

1.7.1 Chemical vapor deposition method

|    |       | 1.7.2   | Physical vapor deposition                            | 20 |
|----|-------|---------|------------------------------------------------------|----|
|    | 1.8   |         | cterization techniques                               | 21 |
|    |       | 1.8.1   | *                                                    | 22 |
|    |       | 1.8.2   | Transmission electron microscope                     | 24 |
|    |       | 1.8.3   | *                                                    | 25 |
|    |       | 1.8.4   | Atomic force microscopy                              | 27 |
|    |       |         | Energy dispersive X-ray spectroscopy                 | 28 |
|    | 1.9   |         | special nano materials                               | 29 |
|    |       | 1.9.1   | <b>▲</b>                                             | 29 |
|    |       | 1.9.2   | Graphene                                             | 31 |
|    |       | 1.9.3   | Fullerene or bucky balls                             | 31 |
|    |       | 1.9.4   | Carbon nanotubes                                     | 33 |
|    |       | 1.9.5   | Quantum dots                                         | 34 |
|    | 1.10  | Appli   | cations of nano materials                            | 35 |
|    | 1.11  | Impac   | et of nanoscience and nanotechnology                 | 36 |
|    | 1.12  | Concl   | usions                                               | 38 |
|    | Refer | ences   |                                                      | 38 |
| 2. | Ouar  | ntum de | ots: a brief review                                  | 41 |
|    |       |         | ukh, Jitendra Bhaiswar, Vinod Kapse and Dhiraj Meghe |    |
|    | 2.1   |         | ground and introduction                              | 41 |
|    | 2.2   |         | ure of quantum dots                                  | 42 |
|    | 2.3   |         | fication of quantum dots                             | 42 |
|    |       |         | Inorganic QDs                                        | 42 |
|    |       |         | Organic QDs                                          | 44 |
|    |       |         | Hybrid QDs                                           | 44 |
|    |       |         | Colloidal QDs                                        | 44 |
|    |       | 2.3.5   | Water-soluble QDs                                    | 45 |
|    |       | 2.3.6   | Epitaxial QDs                                        | 45 |
|    |       | 2.3.7   | Graphene QDs                                         | 45 |
|    |       | 2.3.8   | Perovskite QDs                                       | 45 |
|    |       | 2.3.9   | Carbon nanodots                                      | 46 |
|    | 2.4   | Prope   | rties                                                | 46 |
|    |       | 2.4.1   | Quantum confinement effects and band gap             | 48 |
|    |       | 2.4.2   | Successful mass approximation model                  | 49 |
|    |       | 2.4.3   | 6                                                    |    |
|    |       |         | orbital theory                                       | 49 |
|    |       |         | Luminescence properties                              | 50 |
|    | 2.5   |         | esis processes                                       | 50 |
|    |       | 2.5.1   | Combination processes                                | 50 |
|    |       | 2.5.2   | Hierarchical synthesis processes                     | 50 |
|    |       | 2.5.3   | Granular perspective                                 | 51 |
|    |       | 2.5.4   | Wet-chemical methods                                 | 51 |
|    |       | 2.5.5   | Sol-gel process                                      | 52 |
|    |       | 2.5.6   | Colloidal synthesis                                  | 52 |

|    |             | 2.5.7 Plasma combination                                    | 53  |
|----|-------------|-------------------------------------------------------------|-----|
|    |             | 2.5.8 Manufacture                                           | 53  |
|    |             | 2.5.9 Viral gathering                                       | 54  |
|    | 2.6         |                                                             | 54  |
|    | 2.7         | Practical concerns                                          | 55  |
|    |             | 2.7.1 Stability                                             | 55  |
|    |             | 2.7.2 Disposal                                              | 55  |
|    |             | 2.7.3 Toxicity                                              | 56  |
|    | 2.8         | •                                                           | 57  |
|    |             | 2.8.1 Subcutaneous record keeping                           | 57  |
|    |             | 2.8.2 Quantum speck tests display in vivo poisonousness     | 59  |
|    |             | 2.8.3 Photovoltaic gadgets                                  | 59  |
|    |             | 2.8.4 Quantum spot just sun-oriented cells                  | 60  |
|    |             | 2.8.5 Quantum spot in crossover sun-powered cells           | 60  |
|    | 2.9         |                                                             | 60  |
|    | 2.10        |                                                             | 61  |
|    | Refe        | rences                                                      | 61  |
|    | Furth       | ner reading                                                 | 66  |
| 3. | Qua         | ntum dots synthesis for photovoltaic cells                  | 67  |
|    | <i>Y.C.</i> | Lee, M.H. Buraidah and L.P. Teo                             |     |
|    | 3.1         | Introduction                                                | 67  |
|    | 3.2         | Basic understanding of quantum dot                          | 69  |
|    | 3.3         |                                                             | 72  |
|    |             | 3.3.1 Schottky quantum dots solar cells                     | 73  |
|    |             | 3.3.2 Heterojunction quantum dot solar cells                | 75  |
|    |             | 3.3.3 Photoelectrochemical quantum dot solar cells          | 75  |
|    | 3.4         |                                                             | 78  |
|    |             | 3.4.1 Successive ionic layer adsorption and reaction method | 79  |
|    |             | 3.4.2 Chemical bath deposition technique                    | 83  |
|    |             | 3.4.3 Colloidal synthesis                                   | 85  |
|    |             | 3.4.4 Electrodeposition technique                           | 88  |
|    |             | 3.4.5 Ion beam sputtering deposition                        | 90  |
|    | 3.5         | Summary                                                     | 91  |
|    | Ackr        | nowledgments                                                | 91  |
|    | Refe        | rences                                                      | 91  |
| 4. | -           | ntum confinement effects and feasible mechanisms of         |     |
|    |             | icolor emitting afterglow nanophosphors                     | 99  |
|    | Vish        | nu V. Jaiswal and D. Haranath                               |     |
|    | 4.1         | Introduction                                                | 99  |
|    |             | 4.1.1 History of afterglow phosphor                         | 99  |
|    |             | 4.1.2 Photometry of colorimetry of afterglow phosphors      | 100 |
|    |             | 4.1.3 Quantum confinement effects in 0D, 1D, 2D, and        |     |
|    |             | 3D nanophosphors                                            | 102 |
|    |             | 4.1.4 Applications of quantum confined nanophosphors        | 107 |
|    |             |                                                             |     |

| 4.2  | $Eu^{2+}$ | activated host lattices and their optical properties | 108 |  |  |  |
|------|-----------|------------------------------------------------------|-----|--|--|--|
|      | 4.2.1     |                                                      | 108 |  |  |  |
|      | 4.2.2     | Borates                                              | 108 |  |  |  |
|      | 4.2.3     | Halides                                              | 111 |  |  |  |
|      | 4.2.4     | Nitrides                                             | 111 |  |  |  |
|      | 4.2.5     | Oxides                                               | 111 |  |  |  |
|      | 4.2.6     | Phosphates                                           | 112 |  |  |  |
|      |           | Silicates                                            | 112 |  |  |  |
|      | 4.2.8     | Sulfides and sulfates                                | 112 |  |  |  |
|      | 4.2.9     | Stannates                                            | 113 |  |  |  |
|      | 4.2.10    | Titanates                                            | 113 |  |  |  |
| 4.3  | Synthe    | esis methods for Eu <sup>2+</sup> phosphors          | 113 |  |  |  |
|      | 4.3.1     |                                                      | 114 |  |  |  |
|      | 4.3.2     | Sol-gel method                                       | 114 |  |  |  |
|      | 4.3.3     | Combustion method                                    | 114 |  |  |  |
|      | 4.3.4     | Coprecipitation method                               | 114 |  |  |  |
|      | 4.3.5     | Microemulsion-assisted method                        | 115 |  |  |  |
|      | 4.3.6     | Laser ablation method                                | 115 |  |  |  |
|      | 4.3.7     | Microwave-assisted method                            | 115 |  |  |  |
|      | 4.3.8     | Ultrasonic spray pyrolysis method                    | 116 |  |  |  |
|      | 4.3.9     | Template-assisted method                             | 116 |  |  |  |
|      | 4.3.10    |                                                      | 116 |  |  |  |
| 4.4  | Morph     | nologies of Eu <sup>2+</sup> doped phosphors         | 117 |  |  |  |
|      | 4.4.1     | Quantum dots                                         | 117 |  |  |  |
|      | 4.4.2     | Nanowires, tubes, belts and -fibers                  | 118 |  |  |  |
|      | 4.4.3     | Nanorods                                             | 118 |  |  |  |
|      | 4.4.4     | Nanosheets and thin films                            | 119 |  |  |  |
|      | 4.4.5     | Other morphologies                                   | 120 |  |  |  |
| 4.5  | Mecha     | nisms of Eu <sup>2+</sup> doped afterglow phosphors  | 121 |  |  |  |
|      | 4.5.1     | Conduction-valence band model                        | 121 |  |  |  |
|      | 4.5.2     | The Matsuzawa model                                  | 122 |  |  |  |
|      | 4.5.3     | The Aitasalo model                                   | 122 |  |  |  |
|      | 4.5.4     | The Dorenbos model                                   | 123 |  |  |  |
|      | 4.5.5     | The Clabau model                                     | 124 |  |  |  |
|      | 4.5.6     | Quantum tunneling model                              | 125 |  |  |  |
|      | 4.5.7     | Oxygen vacancy model                                 | 125 |  |  |  |
| 4.6  | Conclu    |                                                      | 126 |  |  |  |
| Ack  | nowledg   | gment                                                | 127 |  |  |  |
| Refe | erences   | e                                                    |     |  |  |  |

| 5. | Quantum dot displays: group II–VI compound materials and |     |  |  |  |
|----|----------------------------------------------------------|-----|--|--|--|
|    | technology                                               | 139 |  |  |  |
|    | Sonal Sahai and D. Haranath                              |     |  |  |  |
|    | 5.1 Introduction: why quantum dots?                      | 139 |  |  |  |

| 5.2  | Group  | II-VI compound quantum dots: boon to innovation          | 139 |
|------|--------|----------------------------------------------------------|-----|
|      | 5.2.1  | Electronic and optical properties of group II-VI quantum |     |
|      |        | dots                                                     | 140 |
|      | 5.2.2  | Synthesis of group II–VI quantum dots                    | 144 |
|      | 5.2.3  | Core-shell structured group II-VI quantum dots           | 145 |
|      | 5.2.4  | Cd-free group II-VI quantum dots                         | 146 |
| 5.3  | Princi | ples and mechanism of quantum dots based displays        | 146 |
|      | 5.3.1  | Working principle of quantum dot displays                | 147 |
|      | 5.3.2  | Device structure                                         | 148 |
|      | 5.3.3  | Printing process                                         | 149 |
| 5.4  | Group  | II-VI quantum dots display devices: materials            |     |
|      | design | 1                                                        | 149 |
| 5.5  | Progre | essive strategies employed for modern group II-VI        |     |
|      | quanti | um dots display devices                                  | 150 |
|      | 5.5.1  | Flexible display device                                  | 150 |
|      | 5.5.2  | Flexible transparent device                              | 150 |
| 5.6  | Curren | nt available technologies in the market                  | 150 |
| 5.7  | Future | e demands and scope                                      | 151 |
| 5.8  | Concl  | usions                                                   | 151 |
| Refe | rences |                                                          | 151 |

## Section II Quantum dots: Applications and prospectives

| 6. | Qua  | Quantum dots-based solar cells: Futuristic green technology to |                                                     |     |  |  |
|----|------|----------------------------------------------------------------|-----------------------------------------------------|-----|--|--|
|    | acco | omplish                                                        | the energy crisis                                   | 157 |  |  |
|    | G.P. | Darsh                                                          | an, D.R. Lavanya, B. Daruka Prasad, S.C. Sharma and |     |  |  |
|    | H. N | lagabhi                                                        | ushana                                              |     |  |  |
|    | 6.1  | Introd                                                         | luction                                             | 157 |  |  |
|    | 6.2  | Vario                                                          | us generations of SCs                               | 160 |  |  |
|    |      | 6.2.1                                                          | First-generation SCs                                | 160 |  |  |
|    |      | 6.2.2                                                          | Second-generation SCs                               | 163 |  |  |
|    |      | 6.2.3                                                          | Third-generation SCs                                | 164 |  |  |
|    |      | 6.2.4                                                          | Fourth-generation SCs                               | 166 |  |  |
|    | 6.3  | Archit                                                         | tectural design of QDS SCs                          | 167 |  |  |
|    |      | 6.3.1                                                          | Excitonic absorber                                  | 168 |  |  |
|    |      | 6.3.2                                                          | Electron transport material                         | 169 |  |  |
|    |      | 6.3.3                                                          | Hole transport material                             | 173 |  |  |
|    |      | 6.3.4                                                          | Counter electrode                                   | 176 |  |  |
|    | 6.4  | Exper                                                          | imental background in quantum dot SCs               | 176 |  |  |
|    |      | 6.4.1                                                          | Current-voltage characteristics                     | 176 |  |  |
|    |      | 6.4.2                                                          | Electrochemical impedance spectroscopy              | 177 |  |  |
|    | 6.5  | Summ                                                           | nary and future prospects                           | 179 |  |  |
|    | Refe | erences                                                        |                                                     | 180 |  |  |
|    |      |                                                                |                                                     |     |  |  |

| 7. |      | ovskite quantum dots                                      | 189   |
|----|------|-----------------------------------------------------------|-------|
|    |      | ol Nande, Swati Raut, R.G. Tanguturi and Sanjay J. Dhobl  |       |
|    | 7.1  |                                                           | 189   |
|    | 7.2  | Perovskite materials                                      | 189   |
|    |      | 7.2.1 History and development of perovskite               | 189   |
|    |      | 7.2.2 Crystal structure                                   | 190   |
|    | 7.3  |                                                           | 192   |
|    |      | 7.3.1 Perovskite quantum well                             | 194   |
|    |      | 7.3.2 Perovskite quantum dot                              | 194   |
|    | 7.4  | 8 1 1 1 1                                                 |       |
|    |      | a brief review                                            | 196   |
|    | 7.5  |                                                           | 199   |
|    |      | 7.5.1 Photovoltaic properties and solar cell applications |       |
|    |      | 7.5.2 Luminescence properties and LEDs' applications      | 201   |
|    |      | 7.5.3 Photocatalysis properties                           | 204   |
|    |      | Concluding remarks                                        | 206   |
|    | Refe | erences                                                   | 206   |
| 8. | -    | antum dots made with using of anodic aluminum oxide       |       |
|    |      | plate: fabrication and application                        | 215   |
|    | Mar  | rta Michalska-Domańska and Sanjay J. Dhoble               |       |
|    | 8.1  | Introduction                                              | 215   |
|    | 8.2  | Characterization of anodic aluminum oxide                 | 216   |
|    |      | 8.2.1 Fabrication method vs morphology of anodic          |       |
|    |      | aluminum oxide                                            | 217   |
|    |      | 8.2.2 Main physicochemical and material properties of     |       |
|    |      | anodic aluminum oxide                                     | 222   |
|    | 8.3  | Application of anodic aluminum oxide in fabrication of    |       |
|    |      | quantum dots                                              | 222   |
|    |      | 8.3.1 Anodic aluminum oxide template-assisted method      | 1 224 |
|    |      | 8.3.2 Fabrication methods of quantum dots with using      | of    |
|    |      | anodic aluminum oxide                                     | 226   |
|    | 8.4  | Perspectives of anodic aluminum oxide in quantum dots     |       |
|    |      | fabrication                                               | 228   |
|    | Ack  | knowledgments                                             | 228   |
|    | Refe | erences                                                   | 228   |
| 9. | Syn  | thesis, structural properties, and applications of cadmin | ım    |
|    | -    | ide quantum dots                                          | 235   |
|    |      | as Lahariya, Marta Michalska-Domańska and Sanjay J. Dł    |       |
|    | 9.1  | Introduction                                              | 235   |
|    |      | 9.1.1 Historical background                               | 236   |
|    |      | 9.1.2 Quantum dots                                        | 236   |
|    | 9.2  | -                                                         | 237   |
|    |      | 9.2.1 Cadmium sulfide core/shell quantum dots             | 239   |

|     | 9.3  | Synthesis                         | s of cadmium sulfide quantum dots                                | 241 |
|-----|------|-----------------------------------|------------------------------------------------------------------|-----|
|     | 9.4  | •                                 | l studies of cadmium sulfide quantum dots                        | 243 |
|     | 9.5  |                                   | tudies of cadmium sulfide quantum dots                           | 244 |
|     | 9.6  | -                                 | ions of cadmium sulfide quantum dots                             | 248 |
|     |      |                                   | hosphor applications of cadmium sulfide quantum dots             | 248 |
|     |      |                                   | hotocatalytic applications of cadmium sulfide                    |     |
|     |      |                                   | uantum dots                                                      | 252 |
|     |      | -                                 | hotovoltaic applications of cadmium sulfide                      |     |
|     |      |                                   | uantum dots                                                      | 254 |
|     |      | -                                 | ensor applications of cadmium sulfide quantum dots               | 259 |
|     | 9.7  |                                   | challenges and future scope                                      | 260 |
|     | 9.8  | Conclusi                          | •                                                                | 261 |
|     | Refe | rences                            |                                                                  | 261 |
| 10  | CAS  | and Ag                            | S quantum data synthesis offeats of daning and                   |     |
| 10. |      | e and Ag <sub>2</sub><br>ications | 2S quantum dots: synthesis, effects of doping, and               | 267 |
|     |      |                                   | and Z. Osman                                                     | -07 |
|     |      | Introduo                          |                                                                  | 267 |
|     | 10.2 |                                   | nd Ag2S quantum dots properties                                  | 268 |
|     |      |                                   | Optical properties                                               | 268 |
|     |      |                                   | Electrical properties                                            | 271 |
|     | 10.3 |                                   | nd Ag2S quantum dots synthetic methods                           | 272 |
|     |      |                                   | The bottom-up synthesis                                          | 272 |
|     |      |                                   | Top-down synthesis                                               | 273 |
|     | 10.4 |                                   | s structures of CdSe and Ag2S quantum dots                       | 275 |
|     |      |                                   | The size of CdSe and $Ag_2S$ quantum dots                        | 275 |
|     |      |                                   | The surface of CdSe and $Ag_2S$ quantum dots                     | 275 |
|     |      | 10.4.3                            | The shape of CdSe and $Ag_2S$ quantum dots                       | 275 |
|     | 10.5 | The dop                           | bed effect on CdSe and $Ag_2S$ quantum dots                      | 276 |
|     | 10.6 |                                   | nd $Ag_2S$ quantum dots applications                             | 276 |
|     |      | 10.6.1                            | CdSe and Ag <sub>2</sub> S quantum dots in solar cells           | 276 |
|     |      | 10.6.2                            | CdSe and Ag <sub>2</sub> S quantum dots in photocatalysis        | 277 |
|     |      | 10.6.3                            | CdSe and Ag <sub>2</sub> S quantum dots in sensors               | 277 |
|     |      | 10.6.4                            | CdSe and Ag <sub>2</sub> S quantum dots in light-emitting diodes | 278 |
|     | 10.7 | Conclus                           | sions                                                            | 278 |
|     | Refe | rences                            |                                                                  | 279 |
| 11. | Synt | hesis cha                         | rracterization, and applications of luminescent                  |     |
| 11. |      |                                   | r quantum dots                                                   | 287 |
|     |      |                                   | Veha Dubey, Shalu Atri, Jagjeet Kaur and Sanjay J. Dhoble        | 207 |
|     | 11.1 | Introduc                          |                                                                  | 287 |
|     | 11.2 |                                   | ative study of various quantum dots                              | 288 |
|     | 11.3 | -                                 | nental methods of luminescent quantum dots                       | 292 |
|     |      | 11.3.1                            | Preparation of pure and doped CdS quantum dots                   | 293 |
|     |      | 11.3.2                            | Characterization of quantum dots                                 | 293 |

|     |       | 11.3.3    | Versatile application of quantum dots                                    | 296   |
|-----|-------|-----------|--------------------------------------------------------------------------|-------|
|     | 11.4  | Conclus   | sion                                                                     | 301   |
|     | Refer | ences     |                                                                          | 301   |
| 12. |       |           | of quantum dots in light-emitting devices                                | 305   |
|     | 0     | iti Kumai |                                                                          | 205   |
|     |       | Introduc  |                                                                          | 305   |
|     | 12.2  |           | nental aspects of quantum dot light-emitting diodes                      | 306   |
|     |       |           | Charge confinement in quantum dots                                       | 306   |
|     |       | 12.2.2    | Charge and energy transfer in quantum dot                                | 315   |
|     |       | 1222      | light-emitting diodes<br>Origin of low quantum efficiency in quantum dot | 515   |
|     |       | 12.2.3    | light-emitting diodes                                                    | 318   |
|     | 12.3  | Decent    | advances in quantum dot light-emitting diodes                            | 318   |
|     | 12.3  |           | Selection of electrodes                                                  | 321   |
|     |       |           | Exploration of charge transport layers                                   | 321   |
|     |       |           | Fabricating materials and architectures                                  | 322   |
|     | 12.4  |           | challenges in commercialization of quantum dot                           | 522   |
|     | 12.1  |           | nitting diodes                                                           | 325   |
|     |       | 0         | Effect of environmental and harsh conditions                             | 325   |
|     |       |           | Encapsulation                                                            | 325   |
|     | 12.5  |           | prospects                                                                | 325   |
|     | 12.6  | Conclus   |                                                                          | 326   |
|     | Refer | ences     |                                                                          | 326   |
| 13. | Func  | tionaliza | tion of carbon and graphene quantum dots                                 | 335   |
|     |       |           | N.F. Shaafi, S.K. Muzakir and A.S. Samsudin                              |       |
|     | 13.1  | Introduc  | ction                                                                    | 335   |
|     | 13.2  | Synthes   | is of quantum dots                                                       | 336   |
|     |       | 13.2.1    | Carbon quantum dots                                                      | 336   |
|     |       |           | Graphene quantum dots                                                    | 344   |
|     | 13.3  | Physico   | chemical properties of quantum dots                                      | 350   |
|     |       | 13.3.1    | Fundamental structure                                                    | 350   |
|     |       |           | Optical properties                                                       | 351   |
|     | 13.4  |           | c cluster models                                                         | 357   |
|     |       |           | Trend of research                                                        | 357   |
|     |       |           | Simulation tools used by researchers                                     | 358   |
|     |       |           | What are the researchers simulating?                                     | 363   |
|     | 13.5  | Challen   |                                                                          | 368   |
|     |       | 13.5.1    | Computational requirement                                                | 368   |
|     |       | 13.5.2    | Price of commercial graphene quantum dots and                            |       |
|     |       |           | advancement of laboratory scale graphene quantum dots                    | 368   |
|     |       | 13.5.3    | Hazards                                                                  | 371   |
|     | 13.6  | -         | prospects of graphene quantum dots and carbon                            | a = : |
|     |       | quantun   | n dots                                                                   | 371   |

|     |              | 13.6.1 Energy conversion device (photovoltaic device)         | 372 |
|-----|--------------|---------------------------------------------------------------|-----|
|     |              | 13.6.2 Energy storage device (Supercapacitor)                 | 373 |
|     |              | 13.6.3 Energy emitting device (light emitting diode)          | 374 |
|     | 13.7         | Conclusion                                                    | 374 |
|     | Refer        | rences                                                        | 375 |
| 14. | Appl         | ications of quantum dots in energy conversion and             |     |
|     |              | ige devices                                                   | 383 |
|     | T.M.V        | W.J. Bandara, A.A.A.P. Aththanayake, L.B.E. Gunasekara and    |     |
|     | <i>W.M</i> . | .C.Y. Wijesundara                                             |     |
|     | 14.1         | Introduction                                                  | 383 |
|     |              | 14.1.1 Introduction to quantum dots                           | 383 |
|     |              | 14.1.2 Structure of quantum dots                              | 384 |
|     | 14.2         | Theory                                                        | 388 |
|     |              | 14.2.1 Size and Bohr radius of quantum dots                   | 389 |
|     |              | 14.2.2 Quantum confinement                                    | 392 |
|     | 14.3         | Versatile applications of quantum dots in the field of energy | 395 |
|     |              | 14.3.1 Quantum dots in the field of energy conversion         | 395 |
|     |              | 14.3.2 Quantum dots in the field of energy storage            | 406 |
|     | 14.4         | 1 1                                                           | 411 |
|     | 14.5         | 5                                                             | 412 |
|     | Refer        | rences                                                        | 413 |
| 15. | Quar         | ntum dots: chemical applications                              | 421 |
|     | Yoger        | ndra D. Kannao, Divya P. Barai, Bharat A. Bhanvase and        |     |
|     | Rajen        | ndra P. Ugwekar                                               |     |
|     | 15.1         | Introduction                                                  | 421 |
|     | 15.2         | Synthesis of quantum dots                                     | 422 |
|     |              | 15.2.1 Top-down approaches                                    | 423 |
|     |              | 15.2.2 Bottom-up approaches                                   | 424 |
|     | 15.3         | Applications of quantum dots                                  | 426 |
|     |              | 15.3.1 Chemical sensing                                       | 426 |
|     |              | 15.3.2 Biosensing                                             | 427 |
|     |              | 15.3.3 Capillary electrophoresis                              | 427 |
|     |              | 15.3.4 Immunological/residue detection                        | 428 |
|     |              | 15.3.5 Fuel cells                                             | 428 |
|     |              | 15.3.6 Solid phase reactor                                    | 428 |
|     |              | 15.3.7 Dye-sensitized solar cells                             | 428 |
|     |              | 15.3.8 UV absorbers                                           | 429 |
|     |              | 15.3.9 Invisible security ink                                 | 429 |
|     |              | 15.3.10 Green corrosion inhibitor                             | 429 |
|     | 15.4         | Challenges and future prospects                               | 429 |
|     | 15.5         | Summary                                                       | 430 |
|     | Refer        | rences                                                        | 430 |

| 16. | Quar                                                       | ntum dots: catalysis applications                                   | 439 |  |  |
|-----|------------------------------------------------------------|---------------------------------------------------------------------|-----|--|--|
|     | Мауи                                                       | uri Tambe, Divya P. Barai, Bharat A. Bhanvase and Sanjay P. Shirsa. | ţ   |  |  |
|     | 16.1                                                       | Introduction                                                        | 439 |  |  |
|     | 16.2                                                       | Synthesis methods                                                   | 440 |  |  |
|     |                                                            | 16.2.1 Top-down synthesis processes                                 | 440 |  |  |
|     |                                                            | 16.2.2 Bottom-up preparation methods for QDs                        | 441 |  |  |
|     |                                                            | 16.2.3 Green synthesis approaches                                   | 443 |  |  |
|     | 16.3                                                       | Properties                                                          | 444 |  |  |
|     | 16.4                                                       | Applications of quantum dots in catalysis                           | 444 |  |  |
|     |                                                            | 16.4.1 Photocatalysis                                               | 445 |  |  |
|     |                                                            | 16.4.2 Electrocatalysis                                             | 450 |  |  |
|     |                                                            | 16.4.3 Other catalytic applications                                 | 451 |  |  |
|     | 16.5                                                       | Methods for enhancing catalysis activity                            | 452 |  |  |
|     |                                                            | 16.5.1 Doping in quantum dots                                       | 452 |  |  |
|     |                                                            | 16.5.2 Alloying of quantum dots                                     | 452 |  |  |
|     | 16.6                                                       | Future prospects                                                    | 453 |  |  |
|     | 16.7                                                       | Summary                                                             | 453 |  |  |
|     | Refe                                                       | rences                                                              | 454 |  |  |
| 17. | Bioapplications of quantum dots                            |                                                                     |     |  |  |
|     | Neha Dubey, Vikas Dubey, Jagjeet Kaur and Sanjay J. Dhoble |                                                                     |     |  |  |
|     |                                                            | 17.1 Introduction                                                   |     |  |  |
|     | 17.2                                                       | Conclusion                                                          | 472 |  |  |
|     | Refer                                                      | rences                                                              | 473 |  |  |
| 18. | Quantum dots: novel approach for biological imaging        |                                                                     |     |  |  |
|     | Neha S. Raut, Milind J. Umekar and Sanjay J. Dhoble        |                                                                     |     |  |  |
|     | 18.1                                                       | Introduction                                                        | 477 |  |  |
|     | 18.2                                                       | Structure of quantum dots                                           | 478 |  |  |
|     |                                                            | 18.2.1 Core structure                                               | 478 |  |  |
|     |                                                            | 18.2.2 Surface structure                                            | 480 |  |  |
|     | 18.3                                                       | Physicochemical properties of quantum dot                           | 482 |  |  |
|     |                                                            | 18.3.1 Quantum confinement effects and band gap                     | 482 |  |  |
|     |                                                            | 18.3.2 Luminescence properties                                      | 483 |  |  |
|     | 18.4                                                       | Synthesis processes of quantum dots                                 | 486 |  |  |
|     | 18.5                                                       | Application of quantum dots in bioimaging                           | 486 |  |  |
|     |                                                            | 18.5.1 Fluorescence for bioimaging                                  | 487 |  |  |
|     |                                                            | 18.5.2 Use of fluorescence resonance energy transfer in             |     |  |  |
|     |                                                            | bioimaging                                                          | 489 |  |  |
|     |                                                            | 18.5.3 Surface-enhanced Raman spectroscopy                          | 490 |  |  |
|     |                                                            | 18.5.4 Radio-opacity and paramagnetic properties                    | 491 |  |  |
|     |                                                            | 18.5.5 Magnetic resonance-based bioimaging                          | 491 |  |  |
|     | 18.6                                                       | Toxicological review of quantum dots                                | 492 |  |  |
|     | 18.7                                                       | Future perspective and challenges                                   | 496 |  |  |
|     | References                                                 |                                                                     |     |  |  |

| 19. | Quantum dot-based security ink and fluorescent flexible films:<br>Preparation, characterization, and applications to multiple |                                                                                                  |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|
|     |                                                                                                                               | counterfeiting and cell imaging                                                                  | 501 |
|     | <i>G.P.</i>                                                                                                                   | Darshan, G.R. Suman, H.B. Premkumar, B. Daruka Prasad,<br>Sharma, H. Adarsha and H. Nagabhushana |     |
|     | 19.1                                                                                                                          | Introduction                                                                                     | 501 |
|     | 19.2                                                                                                                          | Systematic study of various QDs used for anti-counterfeiting                                     | 501 |
|     | 17.2                                                                                                                          | applications                                                                                     | 503 |
|     | 19.3                                                                                                                          | Bio-imaging applications of various QDs: a case study                                            | 521 |
|     | 19.4                                                                                                                          | Conclusions and future outlook                                                                   | 534 |
|     | Refer                                                                                                                         |                                                                                                  | 535 |
| 20. | Fluor                                                                                                                         | rescent quantum dots as labeling agents for the                                                  |     |
|     | effect                                                                                                                        | tive detection of latent fingerprints on various surfaces                                        | 539 |
|     | G.P. Darshan, B. Daruka Prasad, H.B. Premkumar, S.C. Sharma,                                                                  |                                                                                                  |     |
|     | K.S. 1                                                                                                                        | Kiran and H. Nagabhushana                                                                        |     |
|     | 20.1                                                                                                                          | Introduction                                                                                     | 539 |
|     | 20.2                                                                                                                          | Latent fingerprints                                                                              | 540 |
|     |                                                                                                                               | 20.2.1 Chemical views to look latent fingerprints                                                | 540 |
|     |                                                                                                                               | 20.2.2 Types of latent fingerprints and their ridge details                                      | 542 |
|     |                                                                                                                               | 20.2.3 Environmental factors affecting on latent                                                 |     |
|     |                                                                                                                               | fingerprints (light sources, temperature and humidity,                                           |     |
|     |                                                                                                                               | vaccum, etc.)                                                                                    | 544 |
|     |                                                                                                                               | 20.2.4 Types of development techniques                                                           | 546 |
|     | 20.3                                                                                                                          | Properties of various quantum dots useful for latent fingerprints                                |     |
|     |                                                                                                                               | visualization                                                                                    | 548 |
|     | 20.4                                                                                                                          | Reported QDs used to visualize the latent fingerprints                                           | 556 |
|     | 20.5                                                                                                                          | Concluding remarks and outlook                                                                   | 568 |
|     | Refer                                                                                                                         | ences                                                                                            | 569 |
| 21. | Sustainability, recycling, and lifetime issues of quantum dots                                                                |                                                                                                  | 575 |
|     | N. Thejo Kalyani, H. Nagabhushana, Marta Michalska-Domańska,                                                                  |                                                                                                  |     |
|     |                                                                                                                               | ngadaesvaran, Abdul Kariem Arof and Sanjay J. Dhoble                                             |     |
|     |                                                                                                                               | Introduction                                                                                     | 575 |
|     | 21.2                                                                                                                          | Practical issues of quantum dots                                                                 | 575 |
|     |                                                                                                                               | 21.2.1 Sustainability                                                                            | 577 |
|     |                                                                                                                               | 21.2.2 Recycling                                                                                 | 577 |
|     |                                                                                                                               | 21.2.3 Lifetime issues                                                                           | 578 |
|     | 21.3                                                                                                                          | Toxicity approach                                                                                | 578 |
|     | 21.4                                                                                                                          | Future prospective                                                                               | 579 |
|     | 21.5                                                                                                                          | Conclusions                                                                                      | 579 |
|     | Refer                                                                                                                         | ences                                                                                            | 579 |
|     |                                                                                                                               |                                                                                                  |     |

### Index

This page intentionally left blank

## List of contributors

**H. Adarsha** Department of Mechanical Engineering, Faculty of Engineering and Technology, Jain Global Campus, Bengaluru, Karnataka, India

**Abdul Kariem Arof** Centre for Ionics, University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

**A.A.A.P.** Aththanayake Faculty of Science, Department of Physics and Post Graduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka

Shalu Atri Department of Chemistry, SGT University, Gurugram, Haryana, India

**T.M.W.J. Bandara** Faculty of Science, Department of Physics and Post Graduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka

**Divya P. Barai** Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

Jitendra Bhaiswar Department of Electronics Engineering, Nagpur Institute of Technology, Nagpur, Maharashtra, India

**Bharat A. Bhanvase** Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

**M.H. Buraidah** Centre for Ionics University of Malaya, Physics Department, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia

**G.P. Darshan** Department of Physics, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India

Amol Deshmukh Department of Electronics Engineering, Nagpur Institute of Technology, Nagpur, Maharashtra, India

Sanjay J. Dhoble Department of Physics, R.T.M. Nagpur University, Nagpur, Maharashtra, India

**Neha Dubey** Department of Physics, Govt. V.Y.T. PG Autonomous College, Durg, Chhattisgarh, India

Vikas Dubey Department of Physics, Bhilai Institute of Technology Raipur, Raipur, Chhattisgarh, India

**L.B.E. Gunasekara** Faculty of Science, Department of Physics and Post Graduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka

**D. Haranath** Luminescent Materials and Devices Group, Department of Physics, National Institute of Technology, Warangal, Telangana, India

Vishnu V. Jaiswal Luminescent Materials and Devices Group, Department of Physics, National Institute of Technology, Warangal, Telangana, India

**N. Thejo Kalyani** Laxminarayan Institute of Technology, Nagpur, Maharashtra, India; Department of Applied Physics, Laxminarayan Institute of Technology, Nagpur, Maharashtra, India

Yogendra D. Kannao Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

**Vinod Kapse** Department of Electronics Engineering, Noida Institute of Engineering & Technology, Greater Noida, Uttar Pradesh, India

Jagjeet Kaur Department of Physics, Govt. V.Y.T. PG Autonomous College, Durg, Chhattisgarh, India

**K.S. Kiran** Department of Physics, Faculty of Engineering and Technology, Jain Global Campus, Bengaluru, Karnataka, India

**Pragati Kumar** Nano-Materials and Device Lab, Department of Nanoscience and Materials, Central University of Jammu, Jammu, Jammu and Kashmir, India

Vikas Lahariya Amity School of Applied Sciences, Amity University Gurugram, Gurugram, Haryana, India

**D.R. Lavanya** Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, Karnataka, India

**Y.C. Lee** Centre for Ionics University of Malaya, Physics Department, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia

**N.A. Masmali** Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Science, Department of Physics, Jazan University, Jazan, Saudi Arabia

**Dhiraj Meghe** Department of Electronics Engineering, Nagpur Institute of Technology, Nagpur, Maharashtra, India

Marta Michalska-Domańska Institute of Optoelectronics, Military University of Technology, Warsaw, Poland

**S.K. Muzakir** Ionic Materials Team, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

**H. Nagabhushana** Department of Studies and Research in Physics, Tumkur University, Tumkur, Karnataka, India; Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, Karnataka, India

Amol Nande Guru Nanak College of Science, Chandrapur, Maharashtra, India

**Z. Osman** Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia

**B. Daruka Prasad** Department of Physics, BMS Institute of Technology and Management, Bengaluru, Karnataka, India

**H.B. Premkumar** Department of Physics, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India

Neha S. Raut Department of Pharmaceutical Chemistry, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Maharashtra, India

Swati Raut Department of Physics, R.T.M. Nagpur University, Nagpur, Maharashtra, India

**M.A. Saadiah** Department of Chemistry, Centre for Foundation Studies, International Islamic University Malaysia, Gambang, Pahang, Malaysia; Ionic Materials Team, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

Sonal Sahai Department of Physics, St. John's College, Agra, Uttar Pradesh, India

**A.S. Samsudin** Ionic Materials Team, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

**N.F. Shaafi** Ionic Materials Team, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

**S.C. Sharma** National Assessment and Accreditation Council, Bengaluru, Karnataka, India; Jain University, Bengaluru, Karnataka, India; Centre for Energy, Indian Institute of Technology, Guwahati, Assam, India

Sanjay P. Shirsat Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

**G.R. Suman** Department of Physics, School of Applied Sciences, Reva University, Bengaluru, Karnataka, India

Mayuri Tambe Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

**R.G. Tanguturi** Department of Materials Science and Engineering, Hubei University, Wuhan, P.R. China

**L.P. Teo** Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur, Malaysia

**Rajendra P. Ugwekar** Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

Milind J. Umekar Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Maharashtra, India

**B. Vengadaesvaran** Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D University of Malaya, Kuala Lumpur, Malaysia

**W.M.C.Y. Wijesundara** Faculty of Science, Department of Physics and Post Graduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka